当前位置:首页 > 光度计 > 正文

弱光照度计

文章阐述了关于弱光光度计,以及弱光照度计的信息,欢迎批评指正。

简述信息一览:

如何选购紫外可见分光光度计?

1、物质的紫外-可见光吸收光谱产生的原因是分子内的电子能级间的跃迁所引起的。紫外可见光光度计原理:分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。紫外可见分光光度计是由光源、单色器、吸收池、检测器和信号处理器等部件组成。

2、需要区分“色差仪”还是“分光光度测色仪”色差仪分为滤色片式(三***值)色差仪和分光光度计式色差仪,三滤色片式色差仪模仿人眼感受,将通过红绿蓝三个滤色片分别接受的样品反射光信号转换成XYZ或Lab三***值。由于很难得到重现性好的滤色器,所以仪器之间的一致性很差,属于入门级的仪器。

 弱光照度计
(图片来源网络,侵删)

3、在实际操作中,可以通过扫描样品的紫外可见光谱图来确定合适的波长。通过观察光谱图可以找到一个既能使被测物质有较大吸收,又能尽量避免干扰的波长。此外,还可以根据实验目的、样品性质以及文献资料等信息来指导选择合适的入射光波长。

紫外可见吸收光谱为什么是连续光谱

1、紫外-可见光光谱(Ultraviolet–visible spectroscopy,UV-Vis),又称紫外-可见分子吸收光谱法,是以紫外线-可见光区域电磁波连续光谱作为光源照射样品,研究物质分子对光吸收的相对强度的方法。通过分子紫外-可见分子吸收光谱法的分析可以进行定性分析,并可依据朗伯-比尔定律进行定量分析。

2、区别和关系:连续态光谱和线状光谱都是发射/吸收光谱,而吸收光谱只是吸收,发射光谱发射而已。后两者包含于前两者。连续光谱是原子中处于束缚态的电子跃迁到自由散射态或者相反所产生的发射/吸收光谱, 因为没有确定的能级间隔, 表现出宽泛的 ,不确定的光谱带, 叫做连续光谱。

 弱光照度计
(图片来源网络,侵删)

3、太阳光属于太阳光谱,连续光谱、线形光谱及吸收光谱的具体区别如下:含义上的区别 连续光谱是指光(辐射)强度随频率变化呈连续分布的光谱。根据量子理论,原子、分子可处于一系列分立的状态。两个态间的跃迁产生光谱线。线状光谱,又称原子光谱,单原子气体或金属蒸气发出光谱均属线状光谱。

4、吸收光谱是当光线穿过一个物质时,物质吸收特定波长的光而产生的光谱。这些被吸收的波长在光谱中形成暗线。吸收光谱可以揭示物质的组成,因为每种元素和化合物都有特定的吸收特征。例如,当我们观察经过大气层过滤后的太阳光时,会看到一系列的吸收线,这些线揭示了大气中气体的成分。

紫外可见分光光度计的固定狭缝和可变狭缝有什么区别?应用上各有什么优...

1、狭缝的大小会影响光谱的分辨率和信噪比.狭缝小,光谱分辨率高;但是传感器接收的信号小,信噪比就差.这是一对矛盾.另外,由于大气吸收等背景、光源的光谱曲线、传感器的特性曲线和色散部件的色散曲线,导致整个系统的光谱特性曲线不可能是平直的一根曲线,不同的频段信号强弱不均。

2、狭缝大灵敏度高,狭缝小分辨率高但灵敏度差。目前大部分光谱仪是固定狭缝,也有少量可以让客户自行更换狭缝。

3、狭缝过宽,单色光不纯,测出的吸光度改变,准确度下降。狭缝过窄,通光量小,灵敏度下降。一般廉价仪器多为固定宽度的狭缝,不能调节。

4、同时,不同的物质对不同波长的单色光呈现出不同的吸光度值,这一变化特征也就是分光光度法用于物质的定性定量分析的理论基础。

5、光源在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。2.单色器单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。单色器质量的优劣,主要决定于色散元件的质量。

6、分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光吸收的效应,物质对光的吸收是具有选择性的,各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理---比耳定律。

为什么荧光光度计入射光源和检测器的方向是垂直的?(最好能简洁点)非常...

荧光分光光度法的灵敏度通常***光光度法高23个数量级。在卫生检验、环境及食品分析、药物分析、生化和临床检测等方面有着广泛的应用。所用灯不同:(1)紫外光区通常用氢灯或氘灯。(2)荧光分光光度法通常用钨灯或卤钨灯。

其特点是灵敏度较高,线性范围宽,噪声低,适用于梯度洗脱,对强吸收物质检测限可达1ng,检测后不破坏样品,可用于制备,并能与任何检测器串联使用。紫外可见检测器的工作原理与结构同一般分光光度计相似,实际上就是装有流动地的紫外可见光度计。

气相色谱的检测器主要***用热导检测器、氢焰检测器和火焰光度检测器等。而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。但是二者均可与MS等联用。 二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。

它的眼睛有着特殊的识别本领,这是由于它的视网膜上有6种功能专一的神经节细胞:叶亮度检测器、普通边检测器、凸边检测器、方向检测器、垂直边检测器、水平检测器,人们模仿它视网膜上的细胞结构制成的鸽眼电子模型,虽结构还不及它的复杂和完善,但安装在警戒雷达上、应用于电子计算机处理有关数据方面已有广阔的前景。

可以大大地降低激发光对荧光的影响,由光源(高压汞灯或氙灯)发出的紫外光和蓝紫光经单色器(滤光片)处理后特定波长的光照射到样品池中,激发样品中的荧光物质而发出荧光,荧光经过滤过和反射后,光信号被光电倍增管放大后,然后以图或数字的形式在控制软件上显示出来。

荧光光谱仪原理

1、荧光光谱仪由激发光源、单色器、狭缝、样品室、信号检测放大系统和信号读出、记录系统组成。激发光源提供用于激发样品的入射光的来源。单色器用来分离出所需要的单色光。信号检测放大系统用来把荧光信号转化为电信号,结合放大系统上的读出装置可显示或记录荧光信号。

2、荧光光谱仪是一种用于测量物质荧光特性的分析仪器。其基本原理是,通过激发光源照射样品,使样品中的荧光物质吸收能量并跃迁至激发态,随后在返回基态的过程中释放出荧光。荧光光谱仪通过检测和分析这些荧光的波长和强度,可以获得样品的荧光光谱信息,进而对样品进行定性和定量分析。

3、X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。

4、原理是 基态原子 (一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以 光辐射 的形式发射出特征波长的荧光。

5、当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1给出了X射线荧光和俄歇电子产生过程示意图。

6、原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法。气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8s,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。

关于弱光光度计和弱光照度计的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于弱光照度计、弱光光度计的信息别忘了在本站搜索。